training PUBLIC SPEAKING & PRESENTATION SKILLS,pelatihan PUBLIC SPEAKING & PRESENTATION SKILLS,training PUBLIC SPEAKING & PRESENTATION SKILLS Batam,training PUBLIC SPEAKING & PRESENTATION SKILLS Bandung,training PUBLIC SPEAKING & PRESENTATION SKILLS Jakarta,training PUBLIC SPEAKING & PRESENTATION SKILLS Jogja,training PUBLIC SPEAKING & PRESENTATION SKILLS Malang,training PUBLIC SPEAKING & PRESENTATION SKILLS Surabaya,training PUBLIC SPEAKING & PRESENTATION SKILLS Bali,training PUBLIC SPEAKING & PRESENTATION SKILLS Lombok,pelatihan PUBLIC SPEAKING & PRESENTATION SKILLS Batam,pelatihan PUBLIC SPEAKING & PRESENTATION SKILLS Bandung,pelatihan PUBLIC SPEAKING & PRESENTATION SKILLS Jakarta,pelatihan PUBLIC SPEAKING & PRESENTATION SKILLS Jogja,pelatihan PUBLIC SPEAKING & PRESENTATION SKILLS Malang,pelatihan PUBLIC SPEAKING & PRESENTATION SKILLS Surabaya,pelatihan PUBLIC SPEAKING & PRESENTATION SKILLS Bali,pelatihan PUBLIC SPEAKING & PRESENTATION SKILLS Lombok

TRAINING GAS TURBINE MATERIAL

Training Simple Cycle Gas Turbines

Training Maintenance And Trouble Shooting Of Gas Turbine Profession

training simple cycle gas turbines murah

PENDAHULUAN :

A gas turbine extracts energy from a flow of hot gas produced by combustion of gas or fuel oil in a stream of compressed air. It has an upstream air compressor (radial or axial flow) mechanically coupled to a downstream turbine and a combustion chamber in between. “Gas turbine” may also refer to just the turbine element.

Energy is released when compressed air is mixed with fuel and ignited in the combustor. The resulting gases are directed over the turbine’s blades, spinning the turbine, and mechanically powering the compressor. Finally, the gases are passed through a nozzle, generating additional thrust by accelerating the hot exhaust gases by expansion back to atmospheric pressure.

Energy is extracted in the form of shaft power, compressed air and thrust, in any combination, and used to power aircraft, trains, ships, electrical generators, and even tanks.

To support the sufficient production system, we need tough worker or increase the worker skill of operation, maintenance, and trouble shooting of gas turbine profession.

PARTICIPANTS

Practitioner in the operator level, supervisor level or planner of machine maintenance technology at engineering industry, which at least senior high school or technical vocational school.

OBJECTIVE TRAINING :

To able know to operation, maintenance, and trouble shooting of gas turbine.

GAS TURBINE MATERIAL OUTLINE:

1.    Overview of Gas Turbine Technology and Applications

Simple cycle Gas Turbines; cycle considerations; applications; fuels and corrosion; emissions; combined cycle and cogeneration. Overview of Developments
High temperature turbines, reheat turbines, close cycles, and other developments.
2.    Rotating Components and Matching

Brief overview of compressor and turbine design; component characteristics and matching. Compressor surge and prevention.
3.    Vibration and Rotor Dynamics

A review of vibration will include specific problems such as Blade Vibration and Shaft Critical Speeds. Case histories will link vibration with the fatigue failure of components. Rotor instability, in its various forms, will be discussed. Vibration spectrum analysis will be utilised for the solution of resonance, instability, and gear and blade problems. Campbell (Spoke) diagrams and Critical Speed maps will be derived and used for the solution of vibration and Rotor Dynamic problems. The design and performance of Squeeze-Film Damper Bearings for overcoming many of the problems associated with machine unbalance and critical speeds, will be covered.
4.    Combustors and Fuels

A description of combustor types, chamber design, fuel atomisation, ignition and combustor arrangements will be presented. Also discussed will be the constraints imposed by fuels on the design and operation of the hardware. The wide spectrum of fuels, both gaseous and liquid, is examined. An overview of fuel treatment and additives will be made.
5.    Performance Analysis

Basic thermodynamic aspects of stationary Gas Turbines. Design and off-design operation. Influence of site effects on typical performance maps. Variable geometry compressor and turbine status.
6.    Performance Analysis for Problem Detection

The fundamental concepts of performance analysis as a tool for saving energy costs are discussed. Basic and applied thermodynamics will be reviewed for gas turbines. The use of performance data to pinpoint problem areas will be discussed. Diagnostics related to fouling, nozzle erosion, bowing surge, choke, etc. will be covered. Meaningful trending methods will also be discussed.
7.    Gas Path Analysis for Stationary Gas Turbines – Status

Simulation of degraded Gas Turbines, derivation and application of fault coefficient matrix, fault trees and other techniques. Implications for component life and emissions.
8.    Gas Turbine Fouling

The causes, effects and detection of fouling in axial compressors will be covered including aero thermodynamic effects, effects on surge margin, intake distortion and blading problems. Filtration and control techniques will be covered.
9.    Gas Turbine Repair

The techniques of inspection and repair of gas turbines are described in detail, including NDT techniques, cleaning, plating, heat treatment, welding, etc.
10.    Maintenance

Case histories of various types of failures and maintenance problems of onshore and offshore gas turbine compressor installations are discussed. Maintenance techniques using bore scope and spectrum analysis including acoustic monitoring are discussed. Techniques for checking and conducting repairs on impellers, diffusers, bearings, couplings, and foundation repair are emphasised.
11.  Special Considerations for CHP Gas Turbines

This section will cover special considerations in design, operation and maintenance of turbines and associated equipment on Cogeneration Services. Several cases will be covered. Off design operation effects on HRSG, STTG Cycles and evaporate cooling will be covered.

TRAINING INSTRUCTOR

Maridjo,Ir. M.Sc.

Jadwal training gas turbine material terbaru :

§ 23 sd 24 Januari 2019

§ 13 sd 14 Februari 2019

§ 20 sd 21 Maret 2019

§ 17 sd 18 April 2019

§ 28 sd 29 Mei 2019

§ 25 sd 26 Juni 2019

§ 16 sd 17 Juli 2019

§ 15 sd 16 Agustus 2019

§ 17 sd 18 September 2019

§ 22 sd 23 Oktober 2019

§ 20 sd 21 November 2019

§ 19 sd 20 Desember 2019

Catatan : Jadwal tersebut dapat disesuaikan dengan kebutuhan calon peserta

Biaya dan Lokasi

training gas turbine material terupdate :

Lokasi :

Yogyakarta, Hotel Dafam Malioboro (6.000.000 IDR / participant)

Jakarta, Hotel Amaris Tendean (6.500.000 IDR / participant)

Bandung, Hotel Golden Flower (6.500.000 IDR / participant)

Bali, Hotel Ibis Kuta (7.500.000 IDR / participant)

Lombok, Hotel Jayakarta (7.500.000 IDR / participant)

Catatan : Biaya diatas belum termasuk akomodasi/penginapan.

Investasi training maintenance and trouble shooting of gas turbine profession murah :

Investasi pelatihan selama tiga hari tersebut menyesuaikan dengan jumlah peserta (on call). *Please feel free to contact us.
Apabila perusahaan membutuhkan paket in house training, anggaran investasi pelatihan dapat menyesuaikan dengan anggaran perusahaan.

Fasilitas training performance analysis for problem detection murah :

1. FREE Airport pickup service (Gratis Antar jemput Hotel/Bandara)

2. FREE Akomodasi Peserta ke tempat pelatihan .

3. Module / Handout training simple cycle gas turbines terupdate .

4. FREE Flashdisk .

5. Sertifikat training gas turbine material terupdate .

6. FREE Bag or bagpackers (Tas Training) .

7. Training Kit (Dokumentasi photo, Blocknote, ATK, etc) training maintenance and trouble shooting of gas turbine profession terbaru .

8. 2xCoffe Break & 1 Lunch, Dinner .

9. Souvenir .

Leave a Comment